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DETERMINATION OF SECOND AND FOURTH

ORDER SECTORIAL HARMONICS IN EARTH'S
GRAVITY FIELD FROM THE MOTION
OF TWELVE-HOUR SATELLITES

by

James P. Murphy
and
Eric L. Victor

SUMMARY

Values of the C,®), 8,3, C,®), and S sectorial harmonics
in the earth's gravity field are obtained from the motion of two
twelve-hour satellites. Each satellite was studied for a period in
excess of two hundred days.
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DETERMINATION OF SECOND AND FOURTH
ORDER SECTORIAL HARMONICS IN EARTH'S
GRAVITY FIELD FROM THE MOTION

OF TWELVE-HOUR SATELLITES

INTRODUCTION

Several determinations of the tesseral harmonic coefficients have been
carried out since the dawn of the space age. In many of these works the har-
monics had to be derived from small short period perturbations in the motion
of close satellites. A particular pair or set of pairs of gravity harmonics
(En("‘), §n<"‘)) are more readily obtained if the mean motion of the satellite and
speed of the rotation of the earth are commensurable. In this case both the
period and amplitude of the perturbations are increased. Further, if the semi-
major axis of the orbit is large, the effects of the harmonics are more easily
separated according to degree. For both satellites 1964 49D (Cosmos 41) and
1965 30A (Molniya 1) the semimajor axis is greater than four earth radii and
therefore permits such separation. The effect of the lower degree harmonics
are further separated due to the presence of a nearly two to one commensur-
ability in the mean motion and speed of rotation of the earth. This separation
occurs in only certain of the second, third, fourth and fifth degree terms due to
the larger amplitude and period of these terms. Satellites for which this
phenomenon occurs are called twelve-hour satellites since they make two
circuits in one day.

THE DISTURBING FUNCTION

The recommended form for the potential of the earth as given in Reference (1)

is
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where
u is the product of the Gravitational Constant G and the mass of the earth Mg,
and where

a_ is the mean equatorial radius of the earth
r is the distance from the center of the earth
B is the latitude

A is the longitude

Pn('“) is the associated Lengendre polynomial defined by

dn+m (X2 - l)n

dxn+m

Pn(m) (x) - (1_x2)m/2 (2)

2" n!

The relationship between the spherical coordinates (r, 8, A) and the Keplerian
elements is

sin8 = sinlIsin(f +w)
1 o
cos Scos A = ‘2*[(1*'005 I)cos(f +w+§2—0g) + (1 - cos I)Cos(f+w—£l+(7’g)]
1 _
cos Bsin A = 2[(1+CosI)cos(f+w+§2—@g) - (1-cos I)cos(f+w*§2+b’g)]

(3)

where f is the true anomaly and Qg is the Greenwich sidereal time.

The portion of the potential of the earth that is dependent upon the spheri-
cal harmonics of the earth is designated as the disturbing function,R. Therefore,

R = U_

L=t (4)




After substituting Equations (3) into Equation (1) and making use of Equation (4),
the disturbing function to be used in this paper is

2
Ma, 3
e <%) {(1 +cos T)? [cz<2> cos (2f + 2+ 20-26 ) + S sin (2f
a

3
3
+ 2wt 200- 2@g)j‘ +2sin21 {CZ(Z) cos (20— 29g) +Sz(2) sin (29- 29,;)]

+ (1-cosI)? [C2(2) cos (2f + 2w~ 20+ 2@g) + 82(2) sin (2f +2w- 20+ 29g)]}

ma

a

15 pa’ 4
+ g —= (—f_‘—) sin I {(1 +cos I)? [c3(2) sin (3f + 3w+ 20 - 2 )-s® cos (3f

# 30+ 20-20)] +(1+cosT)(1~3cosT) [c® sin(f +w+20-20)
- 54D cos (£ +w+ 200 - 29g)] +(1-cos I)(1+3cosI) {c;” sin(f +w-20+29)
-S® cos(f +w- 2Q+26’g)] +(1-cos I)? [c3<2> sin (3f + 3w~ 20+ 20 )

- S8{? cos (3f +3w- 20+ 2<9g):|}

_ 15 el (ay 7 sin? + 2@ 4f + 4w+ 20~ 20 ) +S,2) sin(4f
32 s L sin“I(1+cosI)”|C, cos( w g) 4 sxn(4

+ 4w+ 20 - 29g)] +4(1+ cos I)? (1 -7 cosI+7cos? I) [C4(2) cos (2f + 2w+ 20
—20) +5£% sin(2f + 2w +20- 29g)] -6 sin? 1[(:4(2) cos (20-26 ) +8,? sin(20
- 29g)] +4(1- cos I)? (1 +7 cos I+7 cos? I) [C4(2) cos (2f + 2w- 20+ 26’g)

+8,% sin (2f + 2w - 20+ 2@3)] +7sin? I (1- cos 1)2[c4<2> cos (4f + 4w~ 20

+20,) + 8P sin (4f + 4w - 20+ zeg)}}



105 ~at <a
a

5
o ;) {(1 t cos 1)4[c4<4> cos (4f + 4w+ 40-46 ) + 8 sin (4f + 4o
+40-49 )] + 4 5in? (1 + cos 1)? [C( cos (2f + 20+ 40-46 ) + S sin (2f
+ 2w+ 40 - 4eg)]+ 6 sin* I [c4<4> cos (40-40 ) + S sin (40—4@g)]+ 4sin’ 1 (1
- cos 1)2[c4<4> cos (2f + 20- 40+ 46 ) + S sin(2f +20-40+ 49g)]+<1

- cos I)* [C4(4) cos (4f + 4o - 40+ 4(9g) +S{* sin (4f +4w- 40+ 4(9g)]}

105 ~a_ > [a\6
+—a i <%> Sinl{‘38in21(1+cosI)2[C5(2)sin(5f+5w+2Q—2@g)

= 8¢® cos (5f + 50+ 20 - 29g)] - (+cos 1)2(1-12cos I + 15cos? 1) {csm sin 3f

+ 3wt 20~ 29g) *Ss(z)cos(3f +3w+2Q-2<9g)] +2(1+cosI) (1—3cos I
-9cos?1+15cos? I) [C5(2) sin (f +tw+ 20- 29g) - 84? cos (f twt 20~ 2t9g)]
-2(1-cos1) (1 +3cosI-9cos?I-15cos? I) [Cs(z) sin (f tw=-20+ 26g)

“ 8P cos (frw-20+20)] +(1-cos )7 (1+12cos T +15 cos?1) [c® sin (3¢
t3w- 20+ 20 ) -84 cos (3f + 3w~ 20+ 26g)] +3sin?I (1~ cos 1)2[c5<2> sin (5f

tSw= 20+ 260 ) - S/ cos (5f + 5w - 20+ 2<9g)]}

945 #a’ (a\6
* 32 o (;) $inl {(1 + cos 1)4[(:5“) sin(5f + Sw+ 40 - 40 ) - S{* cos (5f + 5w

+4Q—49g)] +(l+cosI)2(3-5cosI) [cs<4> sin (3f + 3wt 40~ ) - S cos (3f
+3w+4Q~48g)] +2sin2I(1+cos I)(1-5 cos 1)[c5<4> sin (f +w+40-40,)
-8 cos(f +cu+4Q—48g)] -2sin?*I(1-cosI)(1+5cosI) [C5(4) sin (f +w

~ 40+ 40) -8 cos(f +w—4Q+49g):|“(1— cos I)3 (3+5cos I) [CS“‘) sin (3f + 3w
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-40+46 ) - S{* cos(3f + 3w-40+ 4@g)] -(1-cosI)* [c5<4> sin (5f

+ 5w-4Q+46g) -8{*) cos (Sf +5w-4Q+49g)]} (5)

It will be more convenient to have R expressed in terms of the mean anomaly
rather than the true anomaly. If the eccentricity of the satellite were small
enough, it would be possible to transform from the true anomaly to the mean
anomaly by means of expressions found in Cayley's Tables, Reference (2). How-
ever, since the satellites that will be considered in this paper have eccentricities
in excess of .7 and since the expressions in Cayley's Tables are carried out only
to the seventh power in eccentricity, an alternative approach must be taken. A
more desirable representation is obtained by making use of the following rela-
tionship given in Reference (3),

a\P sin _ = - sin
T cos qf B qu"'l;,q (e) cos (q+n)M (6)

n=—®

The quantity X ' (e)is the Hansen coefficient and is defined in Reference (3).

The symbol M denotes the mean anomaly.

THE EQUATION FOR THE SEMIMAJOR AXIS

The semimajor axis of an artificial satellite is almost always free of long
period perturbations. However, they can arise from two sources. The accum-
ulative effect of radiation pressure due to passage through the shadow, see
References (4) and (5),and a resonance condition in the longitude dependent
terms in the earth's potential can cause such variations. While the first of
these effects is negligible for the satellites to be considered here, the second
effect produces perturbations of periods in the neighborhood of 116 days and
58 days for 1964 49D and in the neighborhood of 144 days and 72 days for 1965 30A
when one considers harmonics through the fifth degree, fourth order. These
predictable periods were observed in the data,

The equation for the semimajor axis is now obtained to use in the determina-
tion of some of the gravity harmonics. The rate of change of the semimajor axis
is

o = _2 a_R.
a na oM (7)

After substituting Equation (6) into (7) and singling out the resonant terms,
taking the partial derivative and integrating, the equation for the semimajor



axis is obtained. It is

where,
sa = a [sz cos (M + 2w + 20 - 20) +SSP sin(M+ 2w+ 20- 28g)]
+a, [C2<2> cos (M+ 20 - 20.) +S, P sin(M+20- 29g)]
ta, [Cz(z) cos (M— 20 + 200 - 26)g) t8,52 Sin(M— 2ot 2= 2@8)]
+a, [Cs(” sin(M+ 3w + 20 - 2¢9g) -s,® cos(M+ 3w+ 20~ 2‘9g)]
ta, [C3(2) sin(M+w+20-20.) =S cos(M+w+ 20~ 2{)%)]

[C3<2> sin(M-w+20-20 ) -8 cos (M~ w+20- 29g)]

+a6
ta, [c3<2> sin{M~- 3w +20-20 ) -8 cos (M- 3w+ 20~ zeg)]
+ag [c4<2> cos(M+4w+20-20 ) +8, sin(M+ 4w + 20 - wg)]
* oy [c4<2> cos (M+ 2w +20 - 29g) t8, sin(M+ 2w+ 20~ 2Hg)]
ta,, [c4<2> cos (M+20-20,) +8, sin(M+ 20- zeg)]

r .
fay 'LC4(2) cos (M- 2w + 20 - 29g) 8,9 51n(M— 2w+ 20 - QHg)]

tag, [C4(2) cos(M-4w+20-20 ) 452 sin(M- 4w+ 20 - 202)]

(8)



tayy [CfY

tag, C4(4)

6
tags C{

tage [C4<4)
Tayy [C4(4)
ta [Cs(z)
ta [Cs(z)
ta :Cs("’)
ta :C5(2)

+a CS(Z)

L

+a [C5(2)
ta,, [C5<4>
Tays [C5(4)
%6 [C5(4)

4)
Ty, [Cs(

cos (2M + 4w + 40 - 49g) + 8% sin (M + 40 + 40~ 46’g)]
cos (2M + 2w+ 40~ 48 ) + S, sin (2M + 2 + 40 - 49g)]
cos (2M + 40 - 49g) +8,* sin(2M +4Q- 49g)]

cos (2M = 20+ 40~ 48, ) + S{) sin (2M - 20+ 4040 )|
cos (2M -~ 4w + 40 - 46 ) + S sin (M - 4w + 40 - 4c9g)]

sin(M+ 5w +20- 20 )= S{? cos (M + 5w +20 - 26g)}

sin(M+ 3w + 20~ 29g) -S4 cos (M+ 3w + 20 - 29g)}
sin(M+w+20-20 ) - S cos (M+w+20- 26g):|
sin(M-w+20-20 )~ S{? cos(M-w+ 20~ zgg)J
sin (M- 3w+ 20~ 29 )~ S cos (M- 3w+ 20 - 2eg)]
sin(M- 5w+ 20~ zeg) = S¢® cos (M- 5w+20- 29g)]
sin (2M+50+40-40_)- S cos (2M + 5+ 40 - 4<9g)]

Sin (M +30+40-46,) - S{® cos (M + 3w +42- 4, )]

sin (2M + +42-48,) - S& cos (M +w + 40 - 46 )]

sin(2M -+ 40- 49, )= S cos (M- w+ 40~ 49, )]



T g [c5<4> sin (2M - 3w+ 40 - 48 ) - S cos (M~ 3w+ 40 - 4eg)]

ta,, [c5<4> sin (M- 5w £ 40-46 ) - S cos (M - 5w + 40 - 49g)] (9)

and where
3nae2 (1+cos I)? Xl's'2
oo 2a(n+2&)+2§2—2n')
3nae2 sin? IX1_3'0
A, = 0
a(n+20-2n")
3naez(1—cos I)2X1*3'_2
a, = : :
3 2a(n — 2w+ 20-2n")
15 nae3 sinI (1+ cos I)2X1"4'3
a = T Tt e
4 4a? (n+ 3w+ 20-2n")
15 na:’ sinI (1+cosI)(1-3cos I)Xl"“'1
0 = S .
5 432 (n+(.u+ 2@‘2(]’)
-15na? sinI (1-cos 1) (1+ 3cos I)Xl—d‘"‘
a = R R
6 4a% (n-+20-2n")
-15nal sinI (1-cos1)2X %3
a = P
7 422 (n- 3w+ 20-2n")
-105na? sin?I (1+ cos1)2 X, 54
a = .
5 16a% (n+ 40+ 20~ 2n")
-15 na: (1 +cosI)?(1-7cos1+7cos? I)Xl—s'2
a = . e ——

9 4ad (n+ 2+ 20- 2n")
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19

20

45na® sin? I (1- 7 cos? I)X 30

8a3 (n+20-2n')

-15na*(1-cosI)2 (1+7cos I+7cos? I)xl—s,—2

4a3 (n- 2o+ 20- 2n')

-105na ! sin? I (1-cos I)2X;5 ~*

16a% (n-4&+ 20- 2n")

105nal (1+cosI)% X, 54
8a3 (n+ 20+ 20 - 2n’)

105nat sin?I (1+cosI)2X;5 2

2a% (n+&+20-2n")

315na sin* 1 X, 50

4a% (n+20-2n")

105 na:' sin?1 (1- cos I)? X2‘5"2

2a% (n-i+20-2n")

105 nae4 (1-cosI)* X, 54

8a% (n-2b+20-2n")

-315na’ sin® I (1+cos I)2 X, 65

32a* (n+ 50+ 252- 2n')

“105naj sinI(1+cosI)?(1-12cos I+15cos? I)X &3

32a% (n+ 3&+ 252— 2n')

105 nae5 sinI (1+cosI)(1-3cosI-9cos?I+15cos3 I)XI'G"z

16a* (n+ w+ zb—zn’)



-105 nae5 sinI (1-cosI)(1+3cosI-9cos?I~15cos? I)X1‘6"1

21 16a% (n— &+ 20-2n")

105na’ sinI(1-cosI)*(1+12cosI+15cos? I)X, *73
%2z " 32a* (n- 30+ 20- ;')

315na’ sindI(1-cosI)?X;®"7°
%23~ 32a% (n- 50+ 20- ')

945na 5 sinI (1+cos I)* X, 3
%24 7 8a* (2n + 50+ 41- 4n")

945 naeS sinT (1+ cos1)3(3-5cos I)X2—6'3
a 9 5 = 8 4 D —: e — >._.‘_—_> ) .

a” (2n+ 3w+t 40-4n")

945naes sin® I (1+cosI) (1~ 5cos I)X:,_("1
%26~ 4a (2 + ot 40-4an')

=945 nae5 sin3 1 (1-cosI)(1+5cos I)X2_6'"l
I d4a* (20 - i+ 40-4n")

~945na’ sinI(1-cosI)3(3+5cosI)X, >3
%28 8a* (2n- 30+ 40-4n")

-945na’ sinI (1~ cos )5 Xz_""_5

F29 - 8a* (2n - 54+ 40~ 4n") (10)

The quantity n’ is the speed of rotation of the earth.

NUMERICAL RESULTS

In Table 1 the various resonant arguments present in the equation for the
semimajor axis are listed. The periods of those terms for each satellite are

10




Period (in days) of Resonant Terms, A_ 5 = « [M +2(Q- Qg)] t+ Bw

Table 1

a, B 1964 49D 1965 30A
1 1,-5 112,854 150.400
2 1,-4 113.774 149.331
3 1,-3 114,709 148.277
4 1,-2 115.660 147.238
5 1,-1 116.626 146,213
6 1,0 117.609 145.202
7 1,1 118.608 144,206
8 1,2 119.625 143.222
9 1,3 120.659 142,252
10 1,4 121.711 141.295
11 1,5 122.782 140.351
12 2,-5 57.591 73.878
13 2,-4 57.830 73.619
14 2,-3 58.070 73.362
15 2,-2 58.313 73.106
16 2,-1 58.558 72.853
17 2,0 58.804 72.601
18 2,1 59.053 72.351
19 2,2 59.304 72.103
20 2,3 59.557 71.856
21 2,4 59.812 71.611
22 2,5 60.070 71.368
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also given. One or more of the pairs of harmonics (C, 2, S5?), (C?, s{2),
(€@, 8) and(CS®, S{?)) appears in the coefficient of a trigonometric term
for each of the first eleven periods in this list, and one of the pairs (C ®, 8 ®)
or (C SO (4>) appears in the coefficient of a trigonometric term for each of
the last eleven periods. Since the two groupings of terms have periods that are
so close, it would be most difficult to separate the effects of each pair of har-
monics. Instead, it was assumed the tesseral harmonics (C %, S ),

™, s ), (C .8 (2); and (Cs(“) S{*)) were known while the sectorial
harmomcs (C (2) S (2)) and (C,*, S (4)) were to be obtained by least squares
from the data. The results are presented in terms of the normalized sectorial
harmonics (C_™, §n('“)) . They are related to (C(™, S (M) py (C™, s.m)

n

= NM (C™ S ™) where N(™ = [2(2n+1) (n-m)/(n+m)!]" 1/2for m # 0,

Several solutions were obtained for each satellite. In the first solution it
was assumed that the tesseral harmonics were zero. Then in the next five
solutions they were given values obtained by previous investigators as follows.
In the second solution values obtained by Anderle, Reference (6) for the tesseral
harmonics were used. In the third solution values obtained by Kaula, Reference
(7) for (C», ), (), s,) and (CS(Q), S{?) were used along with
Gaposchkin's L3 solution, Reference (8) for (C(*), S{*) since this pair did
not appear in Reference (7). In solutions four and five values obtained by
Gaposchkin in the L1 and L3 solutions of Reference (8) were used. In the last
solution values obtained by Kohnlein, Reference (9) for the tesseral harmonics
were used. Values for the sectorial harmonics (C,?, $£?) and (C,*), S&®)
were derived for each of these six cases. In Tables 2 and 3 the results are tabu-
lated first for the satellite 1964-49D and then for 1965-30A. Values assumed to
be known for the tesseral harmonics are also indicated in the tables.

In Figures (1) and (2) the data points computed by NORAD and issued by the

Goddard Space Flight Center are plotted. The solid curves represent a com-
puted semimajor axis based upon the results of solution 1 of Tables 2 and 3.
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Table 2*

Second and Fourth Degree Sectorial Harmonics Derived From 1964 49D.

CA | 5 | ©® |5 @ |5®|E®|5® |t s @@ |s®
1{2.19 | -1.72 | O o) o 0] 45 1-.65 |0 0] 0 o)
211.82 | -1.63 | A A A A -.01 [-.68 [A A A A
3] 1.88 | -1.62 | KA KA |KA [KA .21 |-.66 |KA |KA |G3 |G3
41 1.96 | -1.71 G1 Gl |Gl (Gl 20 (-.68 Gl |Gl (Gl |Gl
5 1.95 | -1.69 G3 G3 |[G3 |G3 211-.66 |G3 |G3 |G3 |G3
6| 1.95 | -1.70 | KO KO |KO [KO 19 |-.67 |[KO (KO [KO |KO

*Multiply all coefficients by 1076
Table 3*

Second and Fourth Degree Sectorial Harmonic Derived From 1965 30A.

62(2) §2(2) ~(33(2) §3(2) 64(2) §4(2) 64(4) —5_4(4) 65(2) §5(2) 65(4) §5(4)
1| 242 | -1.74 | O o) o o .38 [-.45 |0 o) 0] o)

2] 2,06 | -1.56 | A A A A 78 |-.58 | A A A A

3| 2.13 -1.55 KA KA |KA JKA 59 |-.52 |]KA |KA |G3 |G3
4/ 2,19 -1.65 Gl Gl |Gl |Gl 60 (-51 Gl |Gl |Gl |Gl
51 2.19 -1.64 G3 G3 |G3 |G3 D9 |-511G3 |G3 |G3 [G3
6] 2.19 -1.65 KO KO |KO [KO .61 |-.52 |[KO KO |KO |KO

*Multiply all coefficients by 10~0
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